

TOEM Series

Heat transfer pumps for heat transfer oils from - 100 °C up to 400 °C

with magnetic coupling bearing brackets 360 and 470

Pumps for heat transfer technology

Main applications

- » Tempering in plastics and die cast industry
- » Baking ovens, large frying units as well as in the production of edible oils and dry masses for the food and feedstuff industries
- » Heating calenders and melting pots in the leather and rubber industry
- » Heating stirring and mixing vessels in the production of paints and varnishes
- » Heating tank storage facilities on stationary and FPSE platforms as well as in tankers
- » Heating press lines in the wood and pulp industry
- » Flat glass production
- » Solar power stations and ORC processes

Usage

These pumps are designed for circulating organic or synthetic heat transfer oils in heat transfer plants in acc. with DIN 4754.

Suitable fo media to be pumped with little non-abrasive contaminations

	Spheroidal graphite cast iron version	Stainless steel version					
Media	Heat transfer oil / thermal oil	Heat transfer oil / thermal oil					
T _{min}	- 40 °C	- 100 °C					
T _{max}	+ 350 ℃	+ 250 °C					
Casing	Spheroidal graphite cast iron EN-GJS-400-15 (GGG-40)	Stainless steel 1.4581					
Nominal pressure	PN	16					
H _{max} (2900 min ⁻¹)	100 m	60 m					
Q _{max} (2900 min ⁻¹)	550 m³/h	170 m³/h					
ATEX	ll 2GD IIC cb TX						

Denomination

Type code Example	TOE	м	A	32	160	/150
Denomination of series						
Magnetic coupling		-				
 N = Version with bearing bracket, volute casing ax/top A = Close-coupled version with bracket, volute casing ax/top I = Close-coupled version with bracket, inline casing 						
Nominal width of outlet nozzle DN						
Nominal impeller diameter in mm					-	
Actual impeller diameter in mm						-

Your contacts

91154 Roth

info@speck.de www.speck.de

Speck Pumpen Systemtechnik GmbH Regensburger Ring 6 -8

Phone: +49 9171 809-0

+49 9171 809-10

International representatives → page 23

2 |

Fax:

TOEM Series

	TOEMN	ΤΟΕΜΑ	ΤΟΕΜΙ
	Example: Casing with feet	Example: Casing with centreline mounting	H
Features	 » Bearing bracket / process design » Base plate » Dismantling of the bearing bracket without moving the motor is possible with optional spacer type coupling » Alignment / checking of the cou- pling required before start-up » Pump and aggregate dimensions in acc. with EN 733 	 » Bracket version » Base plate optional » No alignment of coupling required before start-up » Space for disassembling the cartridge insert required » Pump dimension in acc. with EN 733 	 » Bracket version with inline casing » No alignment of coupling required before start-up » Space for disassembling the cartridge insert required
Pump dimensions	→ Pages 16 and 17	→ Pages 16 and 17	→ Page 18
Hydraulics and casing	 » Identlical hydraulics fo TOEMN and TOI Characteristic curves → pages 12 and » Identical volute casing for each frame s » Large pumps with centreline mounting Description → page 5 	13 size	 » Characteristic curves → pages 12 and 13 » Inline casings with two dimensions H available
Sizes	Only two bearing brackets for all sizes » Bearing bracket 360 for 12 sizes - ident » Bearing brackets 470 for 7 sizes - ident » Only one bracket per size		
Description	M	aterial versions and design $ ightarrow$ pages 6 and	17
Interchangeabili- ty of parts	of interchangeability.	with magnetic coupling (→ see catalogue < and full flexibliliy as replacing pumps or e e 19	

New: TOEMH

For fluids up to + 400 °C Available sizes and more information upon request.

High operational safety, optimal design and service-friendly

Robust design

Torsion-resistant casing cover and ball bearings with lifetime lubrication

Wearing-resistant SiC sleeve bearing

Solid, hydrodynamically lubricated sleeve bearings made from SiC as tried-and-tested slide material - extremely wear-resistant and good resistance in corrosive media.

Impellers with back vanes

The back vanes of the impellers significantly reduce the axial thrust and therefore remove strain from the axial bearings considerably. They also keep dirt particles away from the sleeve bearings.

Clever temperature management

Optimised cooling of ball bearings and magnetic coupling

A fan blade on the coupling is also used for cooling in the TOEMN series. Here, the generated air flow, in combination with coupling protection, ventilation slots and cooling zone, reduces the temperature on the magnetic coupling and ball bearings extremely effectively.

On close-coupled pumps of the TOEMA and TOEMI series, the motor fan also cools the bearing shield and therefore also the ball bearings inside it.

Also suitable for critical applications

Pumps with magnetic couplings

100% free of leakage and lower maintenance requirements than pumps with mechanical seals.

Separating can protection guard

Two separating can protection guards on the inner and outer rotor avoid the destruction of the separating can if a sleeve or rolling bearing fails and they ensure that the pump remains hermetically sealed.

ATEX

All pumps of the TOEG and TOEM series are ATEX certified.

Optimal design

Energy efficiency

High energy efficiency secures a lasting competitive edge.

Speck offers the important criteria for energyoptimised design. Seamless range of sizes, highly efficient impellers, switching of impellers for the best design at the operating point and, naturally, motors in accordance with IE3.

Optimal sizes of magnetic couplings

Magnetic couplings in staged sizes guarantee optimal design at the operating point with minimal viscosity and eddy current losses.

Maintenance-friendly and flexible

Simple installation

All series are extremely maintenance-friendly thanks to easy-to-remove bearing brackets.

You can replace the sleeve bearing cartridge easily as a complete spare part. It is quick and ensures correct installation every time.

Minimum spare parts stock

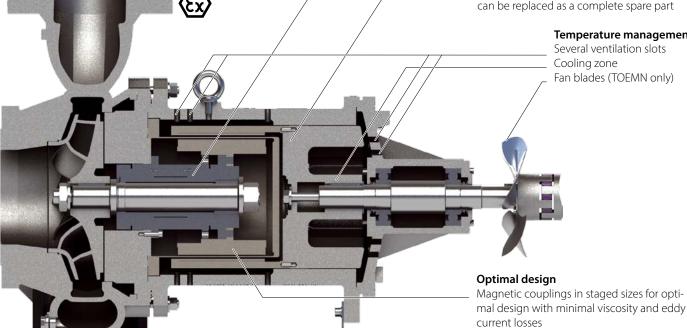
The high level of interchangeability of identical parts guarantees minimal spare parts stock requirements and an extremely high level of flexiblity.

Retrofitting to a different series is also no problem at all - the volute casing can even be left in the system.

Safe

The separating can remains hermetically sealed at bearing failures thanks to separating can protection

Robust and service-friendly

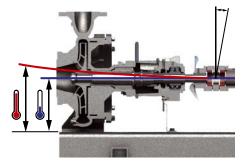

Solid sleeve bearing cartridge with SiC can be replaced as a complete spare part

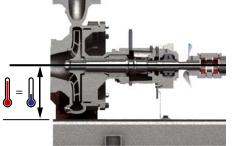
Temperature management

Several ventilation slots

- Cooling zone
- Fan blades (TOEMN only)

Figure: TOEMN, bearing bracket 470, casing with centreline mounting




Longer lifetime

There are effects, which have little or no relevant impact on smaller designs, but lead to increased wear in larger pumps.

Speck offers larger pumps with special designs to guarantee a longer lifetime: Casing with centreline mounting and double volute.

Centreline mounting relieves strain from the bearings and coupling

Casings with feet: The larger the pump, the more strain placed on the bearings and magnet coupling by heat expansion.

Casings with feet can only expand upwards in high temperatures, which causes the pump to tilt and bend. This has an impact on the magnetic coupling and the shaft coupling in particular. As the heat expansion increases with larger casing sizes, the shaft couplings and, eventually the separating can protection guards, wear faster on larger pumps. The centreline mounting eliminates the impact of the heat expansion completely.

Speck is the only manufacturer to use a centreline mounting for heat transfer pumps volute casings (PN 16).

It eliminates the impact of vertical expansion completely. The shafts are always aligned at optimal height, even in hot operation. The shaft coupling achieves a significantly higher lifetime and intact separating can protection guards still work if bearing failures occur.

Centreline mounting

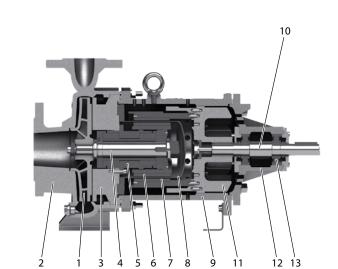
A double volute remove strain from the sleeve bearings

Radial forces are applied directly on the sleeve bearings. The forces increase with higher impeller diameters and higher speeds. This is why the sleeve bearings on larger pumps with single volute casings wear faster.

Speck therefore uses casings with double volute for larger pumps, which significantly reduce the radial forces. The strain on the radial and axial bearings is considerably reduced, helping them achieve a much longer lifetime.

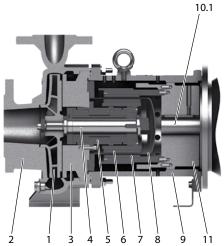
Double volute

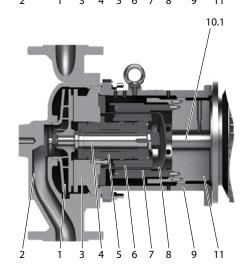
	Bearing bracket 360	I	Bearing bracket 470							
32-250	40-250	50-250	65-250 📑	80-250 📫	100-250 💿 📫	-				
32-200*	40-200*	50-200*	65-200*	80-200	100-200 🔊 💠	125-200 🔊 💠				
32-160*	40-160	50-160	65-160	80-160	100-160 💼	-				


* also available in stainless steel version

TOEMN / TOEMA - Sizes and casing designs

All casings with dimensions in accordance with EN 733 🔕 Casing with double volute 📑 Casing with centreline mounting


Material designs


Bearing bracket 360 with Ø 250 mm impeller 14

TOEMA

TOEMN

TOEMI

Sm₂Co₁₇

Sm₂Co₁₇

2.4610

Sm₂Co₁₇

Sm₂Co₁₇

2.4610

SiC

		H _{max} (2900 min ⁻¹)	100 m
1 3 4 5 6 7	8 9 11	Q _{max} (2900 min ⁻¹)	550 m³/h
1 5 4 5 0 7	0 9 11			
Spheroidal graphite				Spheroidal gra
cast iron version	Stainless steel version	No.	Designation	cast iron versio
EN-GJL-250	1.4581	9	Bracket	EN-GJS-400-15
EN-GJS-400-15	1.4581	10/.1	Drive shaft / motor shaf	ft 1.4122
EN-GJS-400-15	1.4581	11	Coupling insert	EN-GJL-250
1.4122	1.4571	12	Bearing casing	EN-GJL-250
SiC	SiC	13	Rolling bearing	High-guality b

	Spheroidal graphite cast iron version	Stainless steel version						
Media	Heat transfer oil / thermal oil	Heat transfer oil / thermal oil						
T _{min}	- 40 °C	- 100 °C						
T _{max}	+ 350 °C	+ 250 °C						
Nominal pressure	PN 16							
ATEX	II 2GD II	C cb TX						
Series	All series	TOEMN, TOEMA series						
Sizes	All sizes	32-160 32-200 40-200 50-200 65-200						
H _{max} (2900 min ⁻¹)	100 m	60 m						
Q _{max} (2900 min ⁻¹)	550 m³/h	170 m³/h						

		Spheroidal graphite	
No.	Designation	cast iron version	Stainless steel version
9	Bracket	EN-GJS-400-15	EN-GJS-400-15
10/.1	Drive shaft / motor shaft	1.4122	1.4122
11	Coupling insert	EN-GJL-250	EN-GJL-250
12	Bearing casing	EN-GJL-250	EN-GJL-250
13	Rolling bearing	High-quality brand	High-quality brand
14	Counter flange	EN-GJS-400-15	EN-GJS-400-15

EN-GJL-250 = GG-25, EN-GJS-400-15 = GGG-40

No. Designation

Impeller

Casing

Shaft

Casing cover

Sleeve bearing Inner magnet

Outer magnet

Separating can

1

2

3

4

5

6

7

8

Design

Magnetic couplings

The magnetic coupling consist of inner magnetic rotor, separating can and outer magnetic rotor.

The large numer of staged sizes and a modern design software guarantee the best design at the operating point. The transmissible torques of the magnetic couplings range between 10 and 500 Nm.

Type code

Type code Example	135-	70
Nominal diameter DN		
Magnetic length [mm]		

Magnetic coupling sizes

Assemblies

			Magneti DN 75	c coupling di DN 110	iameter DN 135	DN 165
		DN 60	DN 75	DNTIU	DIV 155	DN 165
	40	Х	Х	Х		
	50		Х	Х	Х	
	60	Х	Х	Х	Х	
Magnetic	70			Х	Х	
length	80			Х	Х	Х
[mm]	90				Х	Х
	100					Х
	110					Х
	120					Х
		360	360 Be	360, 470 earing bracke	360, 470 t	470

Maintenance-friendly and safe design

Assemblies are easy-to-replace spare parts

The cartridge insert (TOEMN) or assembly unit (TOEMA, TOEMI) are the parts of the pump getting in touch with the medium to be pumped. They can be removed easily from the volute casing without dismantling the pipes. Both are available as a single spare part and the best choice for quick and falseless repair. We recommend to put at least one cartridge insert/assembly unit into stock.

Further subassemblies are designed in the same way. In the event of servicing, they can be ordered and replaced as a single spare part.

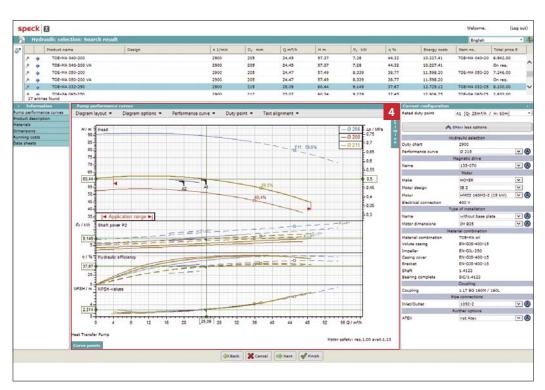
Flushing bore holes

Current eddy, viscosity and bearing friction losses lead to higher temperatures within the pump and have to be added to the media temperature. Flushing bore holes in the inner rotor and the casing ensure that these critical places are cooled by the medium to be pumped. In addition, light ends are discharged from the inner rotor.

Temperature control

If required (e.g. in potentially explosive areas), temperature sensors can be installed in the bracket to control the surface temperature of the separating can.

Sleve bearing bracket Casing cover + sleve bearing + impeller + shaft + inner magnetic rotor + separating casing TOEMN: Cartridge insert Sleve bearing bracket + rolling bearing bracket + bracket Bearing casing + outer magnetic rotor + coupling insert TOEMN: Rolling bearing bracket Bearing casing + outer magnetic rotor + coupling insert TOEMN: Rolling bearing bracket Bearing casing + outer magnetic rotor + coupling insert TOEMN: Rolling bearing bracket Bearing casing + outer magnetic rotor + coupling insert TOEMN: Rolling bearing bracket Bearing casing + outer magnetic rotor + coupling insert TOEMN: Rolling bearing bracket Bearing casing + outer magnetic rotor + coupling insert TOEMN: Rolling bearing bracket Bearing casing + outer magnetic rotor + coupling insert TOEMN: Rolling bearing bracket Bearing casing + outer magnetic rotor + coupling insert TOEMN: Rolling bearing bracket Bearing casing + outer magnetic rotor + coupling insert TOEMN: Rolling bearing bracket Bearing casing + outer magnetic rotor + coupling insert



Simple and optimal configuration software

SPAIX selection program

				Welcom	i. (Log out)
Hydraulic selection: /	Application and liquid			Engla	
Settings Selection Hydraulic selection Areas of application Gesamtprogramm	•	Operating data spo Don't use default v Show calculated in The Reted duty p	alues es		
- high head pump - MZ		-	💙 Sheu meri	aptions	
side channel pumps TOEM stainlass steel	Gesamtprogramm	1	Kind of ci		-
- heat transfer engineering	high head pump	Nature of system	* Single head pump		• 3
	MZ side channel pumps	Duty point name Flave Have	Operating	A1 25 60	A2 20 m²/F *
		Inlet pressure			0 MPs -
	TOEM stainless steel		Medium (1.27
	im heat transfer engineering	Fluid Temperature	* Nariotherm SH	Harlotherm SH B00	* 20 ×c *
		Density	•	944,1	1044 kg/m -
Series	and the second	Viecosity	•	D,45	- 47 mm ²
Outy shart view	Drive S0 Hz Number of poles Any	Vapour pressure	Ambient con	0,02	o MDa •
Hide picture Hide Invalid		No. starts per hour	NI.		40
Select all		Environmental temperati Altitude above sea level	ure		1000 m -
TOEG / TOEGA TOEG / TOEGA TOEG / TOEGI TOEG / TOEGN TOEM / TOEMA	TOEG / TOEGA	2			
CEEM/ COEMA TOEM / TOEMA TOEM / TOEMN TOEM / TOEMX	□ TOEG / TOE GN □ TOEM / TOEMA □ TOEM / TOEMI				

The software allows you to configure heat transfer pumps, side channel pumps and boiler feed pumps via your Internet browser. As well as design details, the system will also request operating details and details about the medium to be pumped.

Characteristic curve depending on hydraulic selection

Ideal for system planners Speck now also offers the latest

version 4 of the renowned SPAIX design software.

We make the program available to authorised customers who can pre-select the pumps within their system.

The web-based software always accesses an up-to-date database.

Easy pre-selection

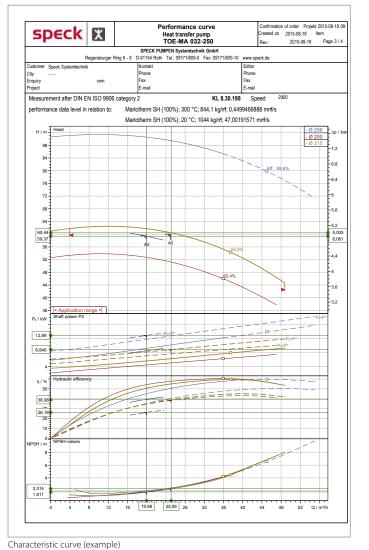
The configuration system avoids a wide range of selection parameters with regard to design, sealing systems, hydraulics, operating conditions and media. The software has language options for German and English.

Checking the pre-selection

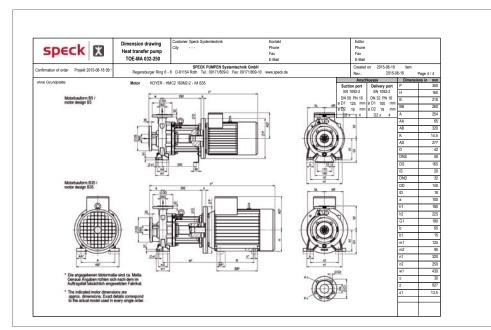
When the order is submitted, the customer's choices are doublechecked to ensure that your project requirements are met.

Key

1 List of all pump designs that can be configured in the software


2 List of all series within the pump designs

3 Selection parameters operating parameters and medium data in the first instance


4 Characteristic curve depending on hydraulic selection generated

	spe	ck	X	C.				Da Heat t TOE-		r pu	mp			0		ed on	n of order 2015-0 2015		Item	-08-18	
	-				I										rxev.:		2013	-00-18	F.	-yo 2	'
			Regensbu	rger R	ing 6 -	8 D-	ы Р 91154	ECK PUMP Roth Tel.:	09171/8	.emtê 09-0	Fax: 0917	ni 1/809	-10 w	ww.speck	(-pun	nps.de					
Cus	tomer Speck S	vstemte		J	9.1		Konta							Editor							-
City		,					Phone	9						Phone							
Enq	uiry		v	m			Fax							Fax							
Proj	ect						E-mai	I						E-mail							
								0	perating	g Data	3										Ī
	Fluid Marle	otherm S	ЗH				Flow rate rated 25,09 m ³ /r							Speed					2900	1/	
	corrosive matters		keine/			ht%	min / ma				3,9 / 48		m³/h	Efficient					38,96		56
	abrasive matters							essure	Inle		0		bar(ü)						8,85	k	
	Solids		300		20 Wg				Disch	1.	5,005	1	bar (ü)	Dissipat	ion			_	2,582	k	W
	Oper. Temp. tW Density at tW / t		844,1	1	20	°C kg/m ³	Head	ure different	ial.		60,44 5,00		m bar(ü)					_		+	_
	Kin. viscosity at 1		0 4499			mm²/s	1 1033		101		3,00	- 1	ai (u)	Flow rat	le at	cold sta	art		19.98	m	13
	Vapor press. at t		0,010	1		bar	Ι.	NPSH	Syste	m	9.67		m	Total. a	bs. p	ower at	t cold sta	rt	12,89	k	N
	PH value		7	/			1 '	VPSH	requir		2,81		m	Dissipat					4,343	k	
			_					Installat	ion / En	viron	ment								_		Ī
10	Building / Outsid	e	Gebä				Altituc	le		<	1000		m	Amb. Te	emp.	min		20) / 40		٩
	under roof yes/n			Ja /	Yes		ATEX	aggrgate ca			tex			rel. Hun	nidity				<55		9
									Pum												ĺ
12	Impeller-Ø / Ri		215 /	1	44	mm			Pressure			PN 1					essure ra			'N 16	
13	Impeller type		ial impeller				Suc		nom. dia			DN 5		Delive	y po		m. diam.	DN		N 32	
						-	Canal		Standar			N 109 250				Standard			EN	1092	-1
15	Single head pum	p			Х	1	lobecu	fyng calming		_	- mn	200	mm	L							
									Access	ories					_						
16 17	Make	HOYE	D	Mo	Type		LINC	2 160M2-2		Der	Ma scription	igneti	c drive 135-		_	Decor		ase pla	te	_	г
	Specific design	IE 2/5	i0 Hz / Pol	e pairs	1		Numbe	r of poles	2				155			Description Specific design					ł
	Rated power	15	1)	kW		e of p					qnetic drive		33	_	kW	Lengt					ħ
		27		A	Frequ		50	± 2%	, Hz		igth of magr		60	-	mm	Width					ħ
21	1-phase / 3-pha				Voltag	je	400			meter		135	mm								
		2930		1/min	Mour			IM B35									ne plate links				
	Motor flange ø	350		mm	Souni	d press	sure level dB(A)							_			links				
24 25					tormin	al box.	molor	ohen		+					_						
25		_			terrini	a box,	motor	Obein	Materi	iale			_		_			_	_		
26	Volute casing					EN	GJS-40	0.15	materi	_	peller						ENICI	250			
	Casing cover						GJS-40				acket			EN-GJL-250 EN-GJS-40							-
	Shaft					1.41		0-10			aring comple	ete		SiC/1.4122					<u> </u>		-
29										1				310/1.412							-
30																					
31				_	_							_			_					_	
32		_		_		<u> </u>	_	-		1			_	_		_	L	_	_		
			-					-	and Ins				-								1
33	Material Tests	5	_	Tes			2)	Certificate kein		er Te			Tes	ts and In	spec Inter			Certifi	ate	Qty	
	Volute casing Impeller				keine keine			kein			essure Test re Test		3)		Inter			kein kein	-	alle	
	Casing cover				keine			kein			e curve		4)		Kein			kein kein		alle	
	Bracket				keine			kein			surement		-		Kein			kein	-	alle	
	Shaft				keine			kein	Final						Inter			kein	-	alle	
39									vibrati	on					Kein	e		kein		alle	-
40									tempe			_			Kein	e		kein		alle	3
41				_	_	_					ating press	ure	16	bar / 20	°C [X Fa	ctor 1,	test	time	10	ſ
								S	hipping			5)									1
42	Net weight appr.	_		kg	Gross	weigh	t appr.				mp color	_	_			motor	color	_		_	Ĩ
								D	ocumen												l
	Dimensional drw		Cross s				perfor	mance curv			er.& Instruc		1.	Other (se	e att	ached)			Qty		
44	RD 8.30.	000	E	4022.	ххх			KL 8.30.19		-	1096.0972	2			_				1		
									Rema	rks											1
45	1) motor supplement		e to ISO grad					motor articl	e												
- 1	 motor supprement according to EN 10 volute casing & ca without NPSH test 	1204 sing cover	a a 130 9900																		

Documentation based on the selection program

Technical data sheet (example)

Save projects

Interim configuration results such as characteristic curves, scale drawings or technical data sheets can be saved as a project and generated as a pdf file.

Dimensional drawing (example)

03/2018 | 1096.0918 TOEM Series | Subject to technical modifications and error.

Order-related tests

Pressure tests

Speck carries out the tests below as standard:

Gas pressure test

The gas pressure test is used to prove that the components are leakproof. All components that bear pressure are tested, such as the volute casing, casing cover and mechanical seal casing. The test is carried out with forming gas at 2 bar. The holding time is 15 minutes.

Hydrostatic pressure test

The hydrostatic pressure test is used to prove strength of the components and that the pump is leak-proof. The fully assembled pump is tested. The test is carried out with a hydrostatic test pressure based on prEN 12162; the hydrostatic test pressure corresponds to 1.5 x the nominal pressure (PN16) at 20 °C. The holding time is 10 minutes.

If you want to use pressure tests according to different criteria, please enter them in the request.

Testing the performance

At the customer's request, Speck offers the following tests:

Hydraulic tests

Measurement according to DIN EN ISO 9906, Class II, Acceptance Class 2B, Edition March 2013

NPSH test

In this test, the suction-side pressure is gradually reduced until the decrease in the delivered head reaches 3 % at a constant flow rate. At least four flows are evaluated that are spread appropriately over the admissible operating range. The NPSH value is not a guarantee point.

Vibration test

Vibration test according to EN ISO 5199, Edition 2002 The vibration values are measured radially and vertically at every operating point on the bearing casing at the nominal speed and with the corresponding flow rate.

Temperature mesurement

The measurement is taken on the motor-side bearing at operating temperature. The operating temperature and the ambient temperature at every operating point measured are documented.

Computer-controlled and fully automated test stands on the premises of Speck in Roth. Measuring of hydraulics, power requirements, axial thrust, vibrations and NPSH values. Heads of up to 400 m and flow rates of up to 750 m³/h are possible. TOEM Series | Subject to technical modifications and error.

Further data and notes

Standard conditions at site

» Ambient temperature from - 20 °C to + 40 °C

» Permissible altitude up to 1000 m above seal level

Deviations from the site conditions specified herein must already be disclosed in the inquiry.

Painting

The pumps are coated with highly heat-resistant white aluminium paint, colour code RAL 9006.

Dimensioning

Assessment of the maximum pump outlet pressure The pump outlet pressure at the pump nozzle depends on

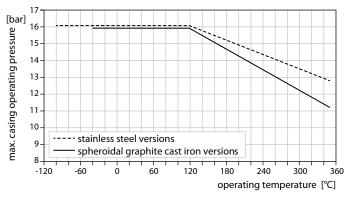
» the pump inlet pressure

- » the maximum total head of the selected impeller diameter
- » the density of the medium to be pumped

The maximum pump out let pressure $p_{2max op}$ is calculated using the formula:

$\mathbf{p}_{2\max op} = \mathbf{p}_{1\max op} + \boldsymbol{\rho} \cdot \mathbf{g} \cdot \mathbf{H} \cdot \mathbf{10}^{-5}$

With:

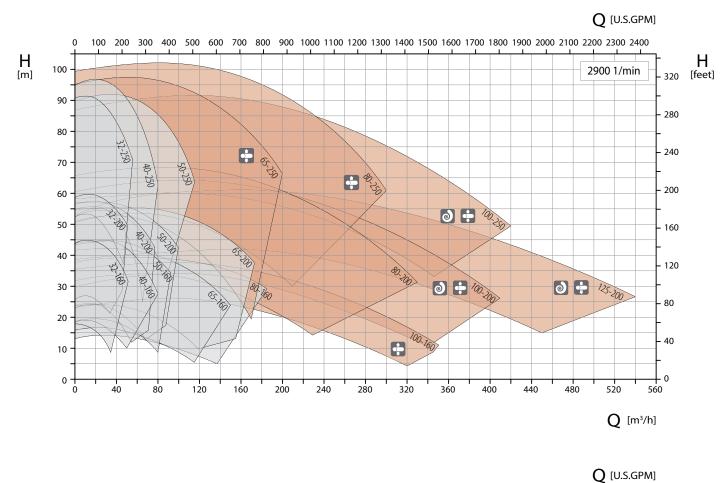

- p_{2max op} = maximum pump outlet pressure [bar]
- p_{1max op} = maximum pump inlet pressure [bar]
- ρ = density of the medium to be pumped [kg/m³]
- g = gravitation constant $[m/s^2]$
- H = maximum total head at zero flow or at the peak of the pump's characteristic curve at the selected impeller diameter [m]

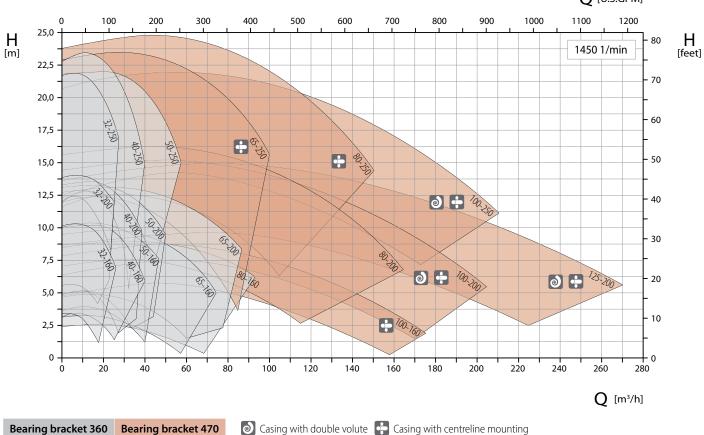
Pumps must be selected and operated in a way which ensures that the maximum pump outlet pressure does by no means exceed the maximum permissible operating pressure of the casing $p_{all \ w \ c}$ at operating pressure.

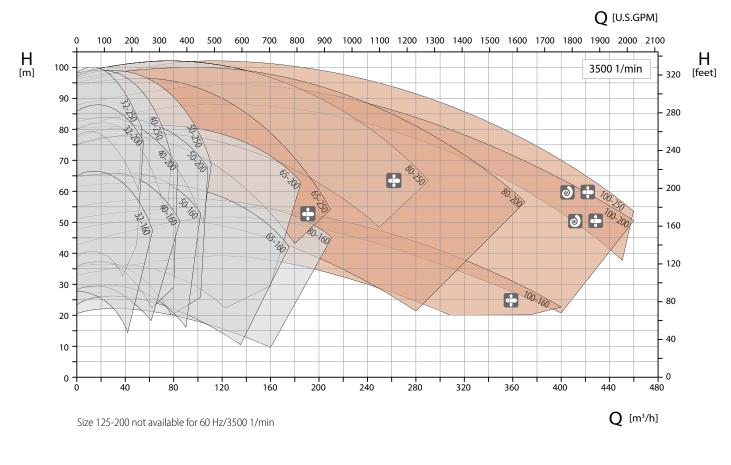
This also applies to commissioning while the discharge valve is closed (refer to diagram).

Pressure and temperature limitations

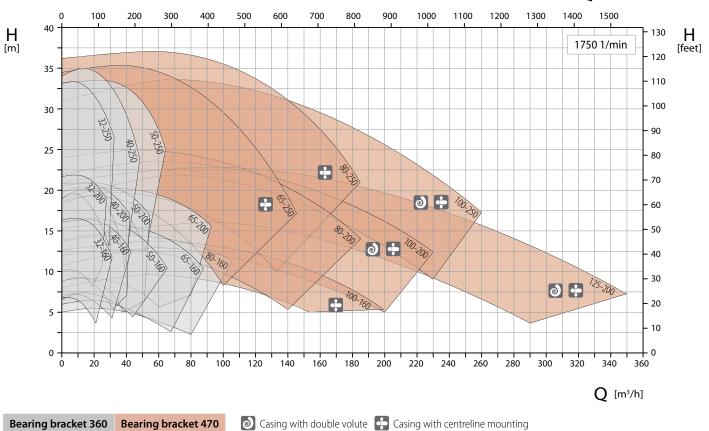
The maximum casing operating pressure $p_{all w c}$ of the pressure retaining parts depends on the operating temperature:

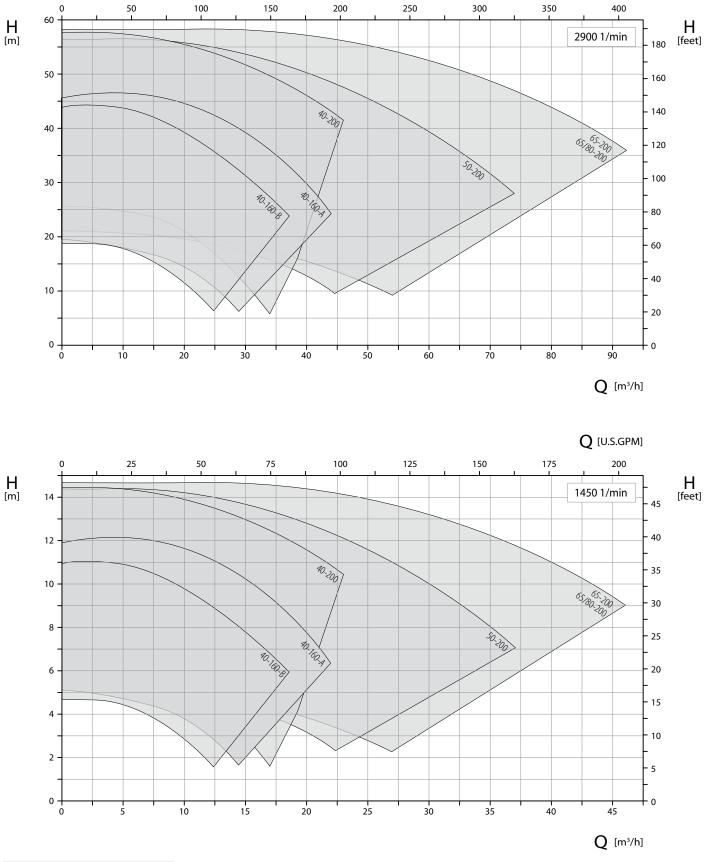



Maximum permissible casing operating pressure pall w c


TOEMN / TOEMA – Characteristic curves

50 Hz




60 Hz

Q [U.S.GPM]

speck 🔀

TOEMI – Characteristic curves

100

150

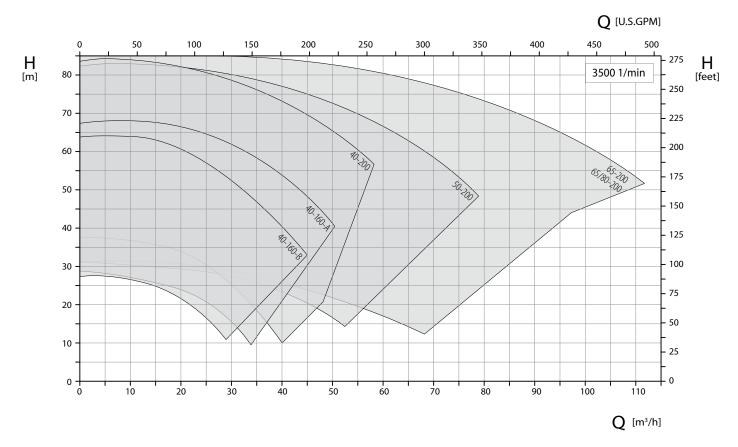
200

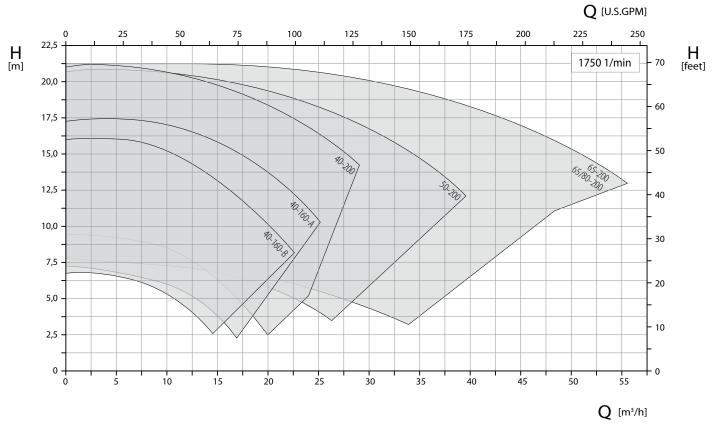
250

50 Hz

0

Size 40-160 with hydraulics A or B available

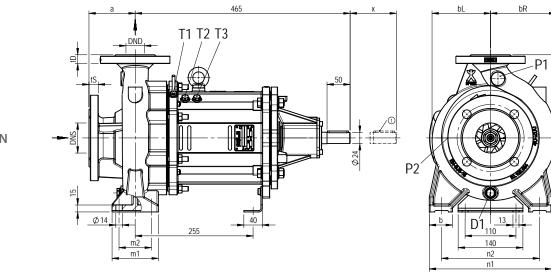

TOEM Series | Subject to technical modifications and error.


Q [U.S.GPM]

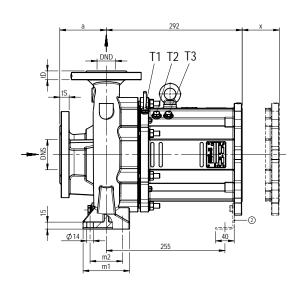
400

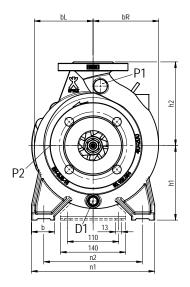
Bearing bracket 360

60 Hz


Size 40-160 with hydraulics A or B available

speck 🔀


Bearing bracket 360


TOEMN / TOEMA – Dimensions and connections

Bearing bracket 360

TOEMN

Ч

F

TOEMA

Size	DNS	DS	tS	DND	DD	tD	а	bL	bR	h1	h2	b	m1	m2	n1	n2	х
32-160	50	165	20	32	140	15	80	116	121	132	160	50	100	70	240	190	110
32-200	50	165	20	32	140	18	80	123	135	160	180	50	100	70	240	190	110
32-250	50	165	20	32	140	18	100	152	163	180	225	65	125	95	320	250	110
40-160	65	185	20	40	150	18	80	123	129	132	160	50	100	70	240	190	110
40-200	65	185	20	40	150	18	100	127	141	160	180	50	100	70	265	212	110
40-250	65	185	20	40	150	18	100	151	160	180	225	65	125	95	320	250	110
50-160	65	185	20	50	165	20	100	123	136	160	180	50	100	70	265	212	110
50-200	65	185	20	50	165	20	100	130	148	160	200	50	100	70	265	212	110
50-250	65	185	20	50	165	20	100	157	170	180	225	65	125	95	320	250	110
65-160	80	200	22	65	185	20	100	124	151	160	200	65	125	95	280	212	110
65-200	80	200	22	65	185	20	100	136	164	180	225	65	125	95	320	250	110
80-160	100	220	24	80	200	22	125	139	174	180	225	65	125	95	320	250	110

Utility connections

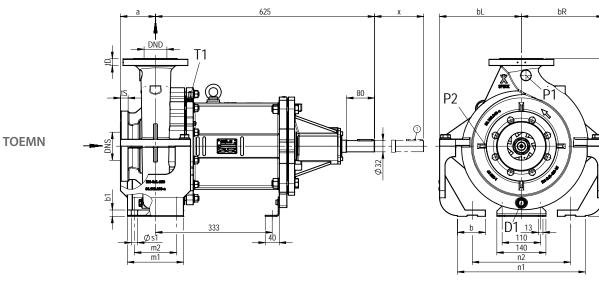
- P1 G 1/4 Manometer connection pressure-side (without bore)
- P2 G 1/8 Manometer connection suction-side (without bore)

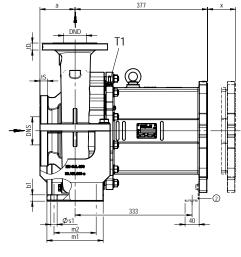
D1 G 3/8 Drainage volute casing

T1 G 1/4 Temperature sensor PT 100 (magnetic coupling 110 / 135 / 165)

T2 G 1/4 Temperature sensor PT 100 (magnetic coupling 75)

T3 G 1/4 Temperature sensor PT 100 (magnetic coupling 60)


① Fiitting key DIN 6885


 Peet applicable for motor design B5 only x = Dismantling dimension

Flange dimensions \rightarrow page 16

TOEMN / TOEMA – Dimensions and connections

Bearing bracket 470

TOEMA

P2 P1 2	
$ \begin{array}{c c} \bullet & \bullet \\ \hline & \bullet & \bullet \\ \hline & \bullet & \bullet \\ \hline & \bullet & \bullet \\ \hline & \bullet & \bullet \\ \hline & \bullet \\ \hline & \bullet & \bullet \\ \hline & \bullet & \bullet \\ \hline \hline & \bullet \\ \hline & \bullet \\ \hline \hline \hline & \bullet \\ \hline \hline $	

bR

Size	DNS	DS	tS	DND	DD	tD	а	bL	bR	h1	h2	b	b1	m1	m2	n1	n2	øs1	Х
65-250	80	200	22	65	185	20	100	233,5	233,5	200	250	80	18	160	120	360	280	18	140
80-200 ¹	100	220	24	80	200	22	125	162,5	191	180	250	65	15	125	95	345	280	14	140
80-250 ²	100	220	24	80	200	22	125	181	206,5	200	280	80	18	160	120	400	315	18	140
100-160	125	254	26	100	230	25	125	233,5	233,5	200	280	80	18	160	120	360	280	18	140
100-200 ³	125	254	26	100	230	25	125	233,5	233,5	200	280	80	18	160	120	360	280	18	140
100-250 ³	125	254	26	100	230	25	140	230	230	225	280	80	18	160	120	400	315	18	140
125-200 ³	150	285	26	125	254	26	140	262	262	250	315	80	18	160	120	400	315	18	140

¹ Casing with feet resp. without centreline mounting

² Casing with feet – as of 2015 casing with centreline mounting

³ Casing with double volute

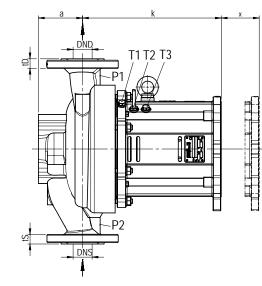
Utility connections

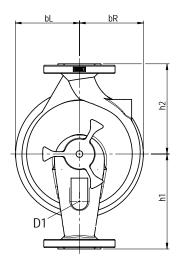
- P1 G 1/4 Manometer connection pressure-side (without bore)
- P2 G 1/8 Manometer connection suction-side (without bore)
- D1 G 3/8 Drainage volute casing
- T1 G 1/4 Temperature sensor PT 100 (magnetic coupling 110 / 135 / 165)

① Fitting key DIN 6885

- ② Feet applicable for motor design B5 only
- x = Dismantling dimension

Flange dimensions \rightarrow page 16


Ч


Ę

TOEMI – Dimensions and connections

Bearing bracket 360

x = Dismantling dimension

TOEMI

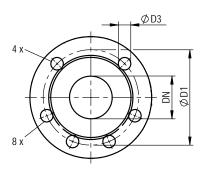
Size	Casing	DNS	DND	а	DD	DS	tD	tS	bL	bR	h1	h2	k	Х
40-160	INA	40	40	97	150	150	20	20	116	116	200	190	395,5	110
40-160	INB	40	40	97	150	150	20	20	116	116	180	160	395,5	110
40-200	INA	40	40	93	150	150	20	20	135	135	200	190	399,5	110
50-200	INA	50	50	102	165	165	21	21	126	139	220	205	399,5	110
50-200	INB	50	50	92	165	165	21	21	126	139	200	180	409,5	110
65-200	INA	65	65	112	185	185	23	23	131	151	240	225	400,5	110
65/80-200	INB	80	80	112	200	200	23	23	131	151	255	225	400,5	110

Utility connections

P1 G 1/4 Manometer connection pressure-side (without bore)

P2 G 1/8 Manometer connection suction-side (without bore)

D1 G 3/8 Drainage volute casing


G 1/4 Temperature sensor PT 100 (magnetic coupling 110 / 135 / 165) G 1/4 Temperature sensor PT 100 (magnetic coupling 75) T1

T2

T3 G 1/4 Temperature sensor PT 100 (magnetic coupling 60)

Flange dimensions

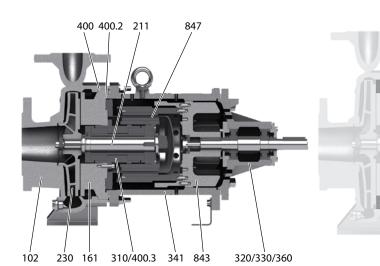
Flar	nges in acc. wi	th DIN EN 109	92-2		nges in acc. wit rilled in acc. wi		
DN	øD1	øD3	Holes	DN	øD1	øD3	Holes
32	100	19	4	32	88,9	16	4
40	110	19	4	40	98,6	16	4
50	125	19	4	50	120,7	19	4
65	145	19	4	65	139,7	19	4
80	160	19	8	80	152,4	19	4
100	180	19	8	100	190,5	19	8
125	210	19	8	125	215,9	22	8
150	240	23	8	150	241,3	22	8

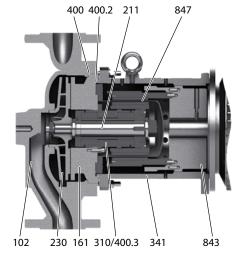
Interchangeability of parts

All series including the versions with mechanical seal (\rightarrow brochure TOEGN/GA/GI series) offer a high degree of interchangeability.

1 and 1

Same components within TOEMN/MA/MI series


Compare only numbers within one **row**:


					1	and	2	anc	k	-	= dif	ferent	num	bers r	mean	differ	ent co	mpor	nents				
													Pu	mp si	ize								
					32-160	32-200	32-250	40-160	40-200	40-250	50-160	50-200	50-250	65-160	65-200	80-160	65-250	80-200	80-250	100-160	100-200	100-250	125-200
Component	No.		Series	;	32-	32-	32-	40-	40-	40-	50-	50-	50-	65-	65-	80-	65-	80-	80-	100	100	100	125-
Bearing bracket complete1	-	MN	MA	MI	1	4	2	1	4	2	1	2	2	1	2	1	3	4	3	5	4	3	4
Volute casing	102	MN	MA	-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
volute casing	102	-	-	MI				20	21			22			23								
Casing cover	161	MN	MA	MI	1	2	2	1		2	1	2	2	1	2	1	3	4	3	5	4	3	4
Shaft	211	MN	MA	MI							1									2			
Impeller	230	MN	MA	-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Impelier	250	-	-	MI				1	20			5			8								
Sleeve bearing ¹	310	MN	MA	MI						1	1									2 ¹			
Bearing casing / rolling bearing / bearing cover	330 / 320 / 360	MN	-	-							1									2			
Bracket	341	MN	MA	MI							1									2			
Flat gasket	400	MN	MA	MI							1									2			
Flat gasket	400.1	MN	MA	-			1			1			1										
Flat gasket	400.2 / 400.3	MN	MA	MI						1	1									2 ¹			
Counter flange	720	MN	MA	-			1			1			1										
Coupling insert ¹	843	MN	MA	MI						1	1									2 ¹			
Magnetic coupling complete ¹	847	MN	MA	MI						1	1									2 ¹			
further parts	-	MN	MA	MI							1									2			

400.1/720

= same number means same component

¹ Interchangeable with identical sizes of magnetic coupling only.

Pumps for heat transfer technology

Centrifugal pumps with mechanical seal

Modular system

TOEG and TOEM series mean a consistent designed modular system. Hydraulics and the main part of the used components are identical and interchangeable.

TOEG Series

These pumps are designed for circulating organic or synthetic heat transfer oils in heat transfer plants in acc. with DIN 4754, as well as hot water.

Suitable for media to be pumped with little non-abrasive contaminations

	Thermal oil versions	Hot water versions					
Media	Heat transfer oil / thermal oil	Water					
T _{min}	- 30 °C	_					
T _{max}	+ 350 °C	+ 160 °C, + 180 °C on request					
Casing	Spheroidal gra	phite cast iron					
Nominal pressure	PN 16						
H _{max} (2900 min ⁻¹)	100 m						
Q _{max} (2900 min ⁻¹)	550 m³/h						
ATEX	II 2GD IIC cb TX						

Description in full length \rightarrow see brochure TOEG series

Regenerative turbine pumps with magnetic coupling

NPY-MK and CY-MK Series

Tried and tested and compact close-coupled pumps with top/top casings and magnetic coupling. Developed for transporting and circulating organic or synthetic heat transfer oils and hot water. Suitable for pumped media with low amounts of non-abrasive impurities. Suitable for the delivery of gas shares due to the principle of delivery.

	Thermal oil versions	Hot water versions					
Media	Heat transfer oil / thermal oil	Water					
T _{min}	- 100 °C	_					
T _{max}	+ 350 °C + 400 °C on request	+ 200 °C higher temp. on request					
Casing	Spheroidal graphite cast iron or stainless steel						
Nominal pressure	PN 25 higher pressures on request						
H _{max} (2900 min ⁻¹)	90 m						
Q _{max} (2900 min ⁻¹)	12 m³/h (200 l/min) 24 m³/h (400 l/min) on request						
ATEX	II 2GD IIC cb TX						

Compact, robust, durable and safe

Regenerative turbine pumps with magnetic coupling from Speck have been used in a wide range of systems and assemblies successfully for many years. The compact design requires minimal installation space and reduces the weight. The perfected pumps also impress with the small number of extremely high-quality parts.

Robust sleeve bearings made from SiC and ceramic shafts guarantee a long lifetime and are free from leakage and maintenance-free thanks to magnetic couplings.

On request, Speck can also develop special designs for special media or with different hydraulics. Please contact us.

Representation

Speck Pumps 8125 Bayberry Rd Jacksonville, FL 32256 USA Tel: 904-739-2626 Fax: 904-737-5261

website: usa.speck-pumps.com email: info.usa@speck-pumps.com

Speck Pumpen Systemtechnik GmbH Postfach 1453 · 91142 Roth / Germany Regensburger Ring 6 - 8 · 91154 Roth / Germany Tel.: +49 (0) 91 71 809 - 0 Fax: +49 (0) 91 71 809 - 10